

Name: Quiz na	me: Chapter 13 Test Review - Fluids
1. (A) (B) (C) (E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	ll fluids are gases liquids gasses or liquids non-metallic transparent
2. (A) (B) (C) (E)	Pa is 1 N/m 1 m/N 1 kg/(m·s) 1 kg/(m·s ²) 1 N/m·s
3. (A) (C) (C) (E)	o obtain the absolute pressure from a guage pressure: subtract atmospheric pressure add atmospheric pressure subtract 273 add 273 convert to N/m ³
4. (A) (B) (D) (E)	he pressure exerted on the ground by a man is greatest when he stands with both feet flat on the ground he stands flat on one foot he stands on the toes of one foot he lies down on the ground all of the above yield the same pressure
	he vessels shown below all contain water to the same height. Rank them according to the pressure xerted by the water at a point located at the bottom of each vessel, least to greatest. 1, 2, 3, 4 3, 4, 2, 1 4, 3, 2, 1 2, 3, 4, 1 All pressures are the same $s = \frac{1}{2} $

The vessels shown below all contain water to the same height. Rank them according to the contacting force for each flask has with the ground, greatest to least.

6.

	We are simply seeing which container 1, 2, 3, 4 3, 4, 2, 1 4, 3, 2, 1 2, 3, 4, 1 All pressures are the same	$\frac{1}{2} = \frac{1}{3} = \frac{1}{4}$
7. (A) (B) (C) (E)	n a stationary homogeneous liquid pressure is the same at all points pressure depends on the direction pressure is independent of any atmospheric pressure on the upper su pressure is the same at all points at the same level none of the above	rface of the liquid
	everal cans of different sizes and shapes are all filled with the same liqu tatement is true? the weight of the liquid is the same for all cans the force of the liquid on the bottom of each can is the same the least pressure is at the bottom of the can with the largest bottom a the greatest pressure is at the bottom of the can with the largest bottom the pressure on the bottom of each can is the same	area
9	he diagram shows a U-tube with cross-sectional area A and partially fille olid cylinder, which fits the tube tightly but can slide without friction, is p ystem is in equilibrium. The weight of the cylinder is: V = AL $AL\rho g$ $L^{3}\rho g$ $A\rho(L+h)g$ Ap(L-h)g none of these	
	he density of water is 1.0g/cm3. The density of the oil in the left column $\begin{array}{cccccccccccccccccccccccccccccccccccc$	oil this mass equals this mass

A bucket resting on the floor of an elevator contains an incompressible fluid of density ρ . When the elevator has an upward acceleration of magnitude a the pressure difference between two points in a fluid separated by a vertical distance Δh , is given by:

) ρa∆h) ρg∆h

11.

. ⊂ ρ(g + a)∆h Accelerating UP wards makes you feel heaviers so simply add the up ward acceleration to the existing gravitational acceleration.

	ρ(g − a)Δh pgaΔh				
ŀ	A certain object floats in fluids of density				
1 2 3 12.	2.0	En order to floats the FB must be equal to FB. So the bullogunt force will always be Fg			
A B D E	Which of the statements is true? the buoyant force of fluid i is greater than the buoyant force of fluid 3 is greater than the three fluids exert the same buoyant fo the object displace the same volume of all none of these are true	the buoyant forces of the other two fluids rce			
13. 1	۲wo identical blocks of ice float in water as sh	own. Then			
A	block A displaces a greater volume of wate acts on a smaller bottom area	r since the pressure			
В	block B displaces a greater volume of wate is less on its bottom	r since the pressure			
	the two blocks displace equal volumes of water since they have the same weight				
D	block A displaces a greater volume of water since its submerged end is lower in the water				
E	block B displaces a greater volume of wate end has a greater area	r since its submerged			
A block of ice at 0 C containing a piece of cork is floating on the surface of ice water in a beaker. 14. When the ice has melted the water level:					
A	is higher	NO mass is allet to			
B	is lower	the system, so the pressure will not change either.			
(B) (C) (D)	is the same	THE THINGS STATE			
	depends on the initial ratio of water to ice				
Ē	depends on the shape of the ice block				

Consider the diagram shown. 6 different masses are suspended in 6 different fluids. Each fluid has the same volume and each mass has the same volume. Which of the following masses experiences the largest buoyant force? If there is a tie, select all that apply.

Consider the diagram shown. 6 different masses are suspended in 6 different fluids. Each fluid has the same volume and each mass has the same volume. Which of the following masses experiences the smallest buoyant force? If there is a tie, select all that apply.

An object hangs from a spring balance. The balance indicates <u>30 N in air and 20 N when the object is</u> submerged in water. What does the balance indicate when the object is submersed in a liquid with a density that is half that of water?

A 20 N	FB=10N in water
📵 25 N	
C 30 N	so it will be FB=5 in a fluid half as dense.
 A 20 N 25 N C 30 N D 35 N E 40 N 	30-ち= 25~
(E) 40 N	50 $) - + 570$

A fir wood board floats in fresh water with 60% of its volume under water. The density of the wood in g/cm³ is:

16.

17.

19.

21.

A boat floating in fresh water displaces 16,000 N of water. How many Newtons of saltwater would it displace if it floats in saltwater with density of 1.17 g/cm³?

(A)	14,500	
B	17,600	The boat is still flating
	16,000	So Fo still is 16,000
\bigcirc	284	
E	234	

A rock, which weighs 1400 N in air, has an apparent weight of 900 N when submerged in fresh water (998 kg/m³). The volume of the rock is:

20. (998 kg	/m ³). The volume of the rock is:	Frank Car Press
(A) 0.14	m ³	$t_B = 500N = P_{\pm}v_{\pm}g$ $500 = (998) V_{\pm}(9.8)$
(B) 0.60	m ³	$500 = (998) V_{5}(78)$
C 0.90		V4=0.051 m ³
🧓 5.1 x	10^{-2} m^3	
Ē 9.2 x	10^{-2} m^3	

A loaded ship passes from a lake (fresh water) to the ocean (saltwater). Saltwater is more dense than fresh water and as a result the ship will:

ride higher in the water

It does not have to displace as mach finid. В

23.

24.

- settle lower in the water
- ride at the same level in the water
- experience an increase in buoyant force
- experience a decrease in buoyant force
- A student standardizes the concentration of a saltwater solution by slowly adding salt until an egg will just float. The procedure is based on the assumption that:
 -) all eggs have the same volume
 - all eggs have the same weight
 - all eggs have the same density
 -) all eggs have the same shape
 - the salt tends to neutralize the cholesterol in the egg
 - The apparent weight of a steel sphere immersed in various liquids is measured using a spring scale. The greatest reading is obtained for that liquid:
 - having the smallest density → this will Minimize the buobant force
 having the largest density
 subject to the greatest atmospheric pressure
 having the greatest volume
 - in which the sphere was submerged deepest

The diagram shows a pipe of uniform cross section in which water is flowing. The directions of flow and the volume flow rates (in cm³/s) are shown for various portions of the pipe. The direction of flow and the volume flow rate in the portion marked A are:

Hint: Recall from circuits that the amount of current coming into a node is the same as the current coming out of the node!

A Down @ 3 cm³/s
 B Up @ 7 cm³/s
 C Down @ 9 cm³/s
 D Up @ 11 cm³/s
 D Down @ 15 cm³/s

25. An in-compressible liquid flows along the pipe as shown. The ratio of the speeds v_2/v_1 is:

- 26. Bernoulli's equation can be derived from the conservation of:
 - energy
 - ∃) mass
 -) angular momentum
 -) volume
 -) pressure

 \vec{v}_2

27.	Water flows through a	constriction in a	horizontal pipe.	As it enters the con	striction, the water's:
_,.	mater nons through a	conscretion in a	nonzonicai pipei	/ is it criters the corn	schedon, the worder st

27. V	Nater flows through a constriction in a horizontal pipe. As it enters the o	constr	iction, th	e water's	:
۷	speed increases and pressure decreases				
В	speed increases and pressure remains constant	\vec{v}_1			\vec{v}_2
C	speed increases and pressure increases				
D	speed decreases and pressure increases				
Ē	speed decreases and pressure decreases				
Δ	A large tank filled with water has two holes in the bottom, one with twic	e the r	radius of	the othe	r. In
	steady flow the speed of water leaving the larger hole is the speed of the				
A	twice				
B C	four times				
C	half				
	one-fourth				
E	the same as				
	Nater flows through a cylindrical pipe of varying cross section. The velo				
29. v	vhere the pipe diameter is 1.0 cm. At a point where the pipe diameter is 9 m/s Arta ۹tts increased by X4	s 3.0 c	m, the ve	elocity is:	
	9 m/s Area gets increased by X9 So velocity yets decreased by X1				
B	3 m/s So Velo (ity yets decreased by X_q^{\perp} 1 m/s $3X_q^{\perp} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$				
	· · · · · · · · · · · · · · · · · · ·				
	0.33 m/s				
C	0.11 m/s				
30. T	The equation of continuity for fluid flow can be derived from the conser	vation	n of:		
A	energy				
	flow rate				
C	angular momentum				
	volume				
E	pressure				
E	magine holding two bricks under water. Brick A is just beneath the surfa B is at a greater depth. The force needed to hold brick B in place is hold brick A in place				
A	larger than				
(the same as				
C	smaller than				
t	A 200-ton ship enters the lock of a canal. The fit between the sides of the hat the weight of the water left in the lock after it closes is much less the loat if the quantity of water left in the lock is much less than the ship's v	nan 200	0 tons. C		
(\mathbf{A})	Yes, as long as the water gets up to the ship's waterline.				
	No, the ship touches bottom because it weighs more than the water i	in the	lock.		
V	Nhan a hole is made in the side of a container holding water, water flow		and follo		abolic

When a hole is made in the side of a container holding water, water flows out and follows a parabolic trajectory. If the container is dropped in free fall, the water flow 33.

diminishes

(A)

stops altogether goes out in a straight line curves upward

A container is filled with oil and fitted on both ends with pistons. The area of the left piston is 10 mm^2 ; that of the right piston 10,000 mm². What force must be exerted on the left piston to keep the 10,000-N car on the right at the same height?

34. HINT: The pressure must be the same on both sides.

(C) (C) (L) (L)	10 N 100 N 10,000 N 106 N 108 N	$P_{1} = P_{2}$ $F_{1} = \frac{F_{0}}{A_{0}}$ $F_{1} = \frac{10.00}{10000}$	F. = 10	F A=10mm ²		000N A=10,000mm ²
d	wo beakers are filled with fluid. ense than water) and water to th ne bottom of the beaker?					
	The Water Beaker					
В	The Oil/Water Beaker			Water		Oil Vater
C	Both the Same					ater
	onsider two identical glasses. On he water level is the same in bot The glass without ice cubes The glass with ice cubes The two weight the same	th glasses. Which we Same depth me		ure.		
37. A	n in-compressible fluid is flowing	g through a pipe. At	which point is the	fluid travelir	ng the fas	test?
(A)	1					
В	2				÷	• •
	3			1 2	3	4 5
Ē	4 5			1 2		т <i>У</i>
38. A	n in-compressible fluid flows thr	rough a pipe. Comp	are the pressure at	points 1 an	d 2.	
	Greater at 1					-
В	Greater at 2]/	2
()	Both the same			<u>1 •</u>		
\bigcirc	Not enough info					
C	onsider a small, horizontal arter	y in which there is a	a constriction due to	o plaque. Th	is constri	ction

- reduces the cross sectional area of the artery. The pressure in the
- 39. constricted region is _____ the pressure in the unconstricted region.

In a laboratory experiment, the amount of significant figures recorded for a measurement should be 40. based on

(c)

Having at least 3 significant figures

Knowing what the exact value should be

- The precision of the instrument used to make the measurement
- Lying