Second Grade Math Overview 2018-2019

This document is designed to provide parents/guardians/community an overview of the curriculum taught in the FBISD classroom. It includes pacing, TEKS, Unit Overview, Big Ideas and Essential Questions, Concepts and Instructional Model.

Definitions:

Overview – The content in this document provides an overview of the pacing and concepts covered in a subject for the year.

TEKS – Texas Essential Knowledge and Skills (TEKS) are the state standards for what students should know and be able to do.

Process Standards – The process standards describe ways in which students are expected to engage in the content. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use knowledge learned efficiently and effectively in daily life.

Unit Overview – The unit overview provides a brief description of the concepts covered in each unit.

Big Ideas and Essential Questions - Big ideas create connections in learning. They anchor all the smaller isolated, facts together in a unit. Essential questions (questions that allow students to go deep in thinking) should answer the big ideas. Students should not be able to answer Essential Questions in one sentence or less. Big ideas should be the underlying concepts, themes, or issues that bring meaning to content.

Concept – A subtopic of the main topic of the unit

Instructional Model – The structures, guidelines or model in which students engage in a particular content that ensures understanding of that content.

Parent Supports:

The following resources provide parents with ideas to support students’ understanding

- [Advice for Parents: Helping Children with Math](#)
- [How Math Should be Taught](#)
- [The Most Important Mathematical Habit of Mind](#)
Instructional Model:
The instructional model for mathematics in FBISD consists of two parts. The first part is how students learn math and how math is instructed. Instruction in mathematics should follow the Concrete-Representational-Abstract Model (CRA). The CRA model allows students to access mathematics content first through a concrete approach (“doing” stage) then representational (“seeing” stage) and then finally abstract (“symbolic” stage). The CRA model allows students to conceptually develop concepts so they have a deeper understanding of the mathematics and are able to apply and transfer their understanding across concepts and contents. The CRA model is implemented in grades K-12 in FBISD. The second part of the instructional model is the lesson cycle. In Grades K – 7, the lesson cycle follows a Math Workshop/Guided Math Lesson Cycle. Components of this lesson include: Number Sense Routine, Task and Share, Focus Lesson, Guided Math, Workstations, and Student Reflection.

Adopted Resources:
Elementary: https://www.fortbendisd.com/Page/93917

Process Standards:
Mathematical Process Standards: The student uses mathematical process to acquire and demonstrate mathematical understanding. The student is expected to:

- 2.1A Apply mathematics to problems arising in everyday life, society, and the workplace
- 2.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution
- 2.1C Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems
- 2.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate
- 2.1E Create and use representations to organize, record, and communicate mathematical ideas
- 2.1F Analyze mathematical relationships to connect and communicate mathematical ideas
- 2.1G Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication

Grading Period 1

Unit 1: Graphing and Setting Up Guided Math
Estimated Date Range: August 15 - 27

Unit Overview: In this unit, students will build on their prior knowledge of graphing. This unit is set up with graphing ideas to help teachers and students to learn about each other. Students will gather data, create pictographs and bar graphs, answer teacher directed questions and generate their own questions as well as make predictions from information in the graph. Setting up the routines for Guided Math and exposing students to a variety of manipulatives and workstation activities is also introduced during this unit.

Big Ideas:
- Data helps us make sense of information in our world.
- Organization of information shows relationships.
- Data can be collected, organized, sorted, and analyzed in a variety of ways by creating real-object and picture graphs.
Essential Questions:
- Why and how do we sort information?
- How do graphs help you to interpret data?
- What are some ways we can organize data?

Concepts within Unit #1

<table>
<thead>
<tr>
<th>Concept #1: Graphing and Setting Up Guided Math</th>
<th>TEKS Link to TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10A, 2.10B, 2.10C, 2.10D</td>
<td></td>
</tr>
</tbody>
</table>

Unit 2: Numeration to 120
Estimated Date Range: Aug. 28 – Sept. 21

Unit Overview: In this unit, students will review reading, writing, representing, comparing and ordering numbers and composing and decomposing numbers 0-120 from first grade. Students will be able to locate, name and place numbers on an open number line. New to second grade is the concept of even and odd. Students will use pairings of objects to determine if a number is even or odd up to the number 40. Students will continue to practice their numeracy skills using larger and larger numbers as they go through second grade and future grades. Students will use this knowledge in their everyday life when working with numbers, and apply this learning when using place value strategies to solve addition and subtraction problems. Students will apply this learning when using place value strategies to solve addition and subtraction problems.

Big Ideas:
- The base 10 number system uses digits 0-9, groups of 10 and place value to understand number structure.
- Any number can be represented in a number of ways that have the same quantity.
- Numbers, expressions, and measures can be compared by their value.
- Place Value knowledge impacts the understanding of operations.

Essential Questions:
- What is the difference between a digit and a value? How many digits in our number system? What is a group of 10?
- How many ways can you represent a number?
- How do you compare numbers? How do you order numbers?
- Why do you need to know how to decompose and compose numbers?

Concepts within Unit #2

<table>
<thead>
<tr>
<th>Concept #1: Reading and Writing Numbers 0-120</th>
<th>TEKS Link to TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2A, 2.2B</td>
<td></td>
</tr>
<tr>
<td>Concept #2: Compose and Decompose Numbers 0-120</td>
<td>2.2A, 2.2B</td>
</tr>
<tr>
<td>Concept #3: Even and Odd to 40</td>
<td>2.7A</td>
</tr>
<tr>
<td>Concept #4: Number Lines 0-120</td>
<td>2.2E, 2.2F, 2.9C</td>
</tr>
<tr>
<td>Concept #5: Compare and order Numbers 0-120</td>
<td>2.2C, 2.2D</td>
</tr>
</tbody>
</table>

Unit 3: Addition and Subtraction to 120
Estimated Date Range: Sept. 24 – Nov. 2

Unit Overview: In first grade, students will have had experiences with using models to add and subtract to 20. In this unit, students will develop addition and subtraction fact fluency. Students will solve one-step and multi-step addition and subtraction word problems. Students will make connections between place value and operations. Students will explore number sentences and equivalencies. Students will continue to use these skills in the future when they begin adding and subtracting with larger whole numbers, decimals and fractions.

Big Ideas:
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The base 10 system helps students solve addition and subtraction with understanding.
- Numerical expressions can be represented in different but equivalent ways to make calculations simpler.
The same number sentence can be associated with different concrete or real-world situations, and different numbers sentences can be associated with the same concrete or real-world situation. For a given set of numbers there are relationships that are always true. Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations so solutions can be found.

Essential Questions:
- What do you do to solve a problem?
- Why is place value important when solving addition and subtraction problems?
- What do you notice about 13 + 4 = 17 and 10 + 7 = 17?
- How can an addition or subtraction number sentence apply to real world situations?
- What is the relationship between 3 + 7+ 4 and 7 + 4 + 3?
- How can you find 17 + x = 21?

<table>
<thead>
<tr>
<th>Concepts within Unit #3</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Addition and Subtraction Facts</td>
<td>2.2A, 2.2B, 2.4A, 2.4B, 2.4C</td>
</tr>
<tr>
<td>Concept #2: Addition and Subtraction</td>
<td>2.2A, 2.2B, 2.4A, 2.4B, 2.4C</td>
</tr>
</tbody>
</table>

Concepts within Unit #3

<table>
<thead>
<tr>
<th>Concept #3: Addition and Subtraction Problem Solving, Number Sentences and Unknowns</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.2A, 2.2B, 2.4A, 2.4B, 2.4C, 2.4D,</td>
</tr>
</tbody>
</table>
Unit 4: Graphing

Estimated Date Range: November 5 - 9

Unit Overview: Previously, students have created and analyzed real object, picture and bar graphs. In this unit, students will create pictographs and bar graphs with intervals or one or more, and make predictions and draw conclusions from the information in these graphs. They will also use that data to write and solve one-step problems. Students will continue to create and analyze increasingly more detailed graphs, such as dot plots and stem-and-leaf.

Big Ideas:
- Data can be represented visually using tables, charts, and graphs. The type of data determines the best choice of visual representation.
- The question to be answered or the problem to be solved determines the most effective way the collection of data should be visually represented.
- Some questions can be answered or problems can be solved by collecting and analyzing data.

Essential Questions:
- How can we visually represent a collection of data in a variety of ways?
- Why is it important to visually represent data in a variety of ways?
- How can collecting and analyzing data help answer questions or solve problems?

<table>
<thead>
<tr>
<th>Concepts within Unit #4</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Graphs</td>
<td>2.2D, 2.2F, 2.4C, 2.10A, 2.10B, 2.10C, 2.10D</td>
</tr>
</tbody>
</table>

Unit 5: 2D and 3D Shapes

Estimated Date Range: Nov. 12 – Dec. 7

Unit Overview: In this unit, students will build on their understanding of two-dimensional and three-dimensional shapes beyond identifying to classifying and sorting three-dimensional shapes and polygons. Students will also compose two- and three-dimensional figures based on attributes. They will apply this understanding to other two-dimensional shapes in third grade and eventually determine perimeter, area and volume of two- and three-dimensional shapes.

Big Ideas:
- Good mathematicians classify objects based on their given attributes.
- Shapes have defining attributes that can be compared to other shapes.
- Decomposing a shape into more equal shapes creates smaller pieces.

Essential Questions:
- What are the ways to describe shapes?
- How can objects be compared using descriptors from geometry?
- Why is it important to be able to describe and name geometric shapes?
- How are geometric shapes constructed?

<table>
<thead>
<tr>
<th>Concepts within Unit #5</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: 2D Shapes</td>
<td>2.8A, 2.8C, 2.8D, 2.8E</td>
</tr>
<tr>
<td>Concept #2: 3D Shapes</td>
<td>2.8B, 2.8D</td>
</tr>
</tbody>
</table>

Unit 6: Numeration to 1,200

Estimated Date Range: December 10 - 21

Unit Overview: In this unit, students will build from their understanding of numeracy to 120 to read, write, represent, compare and order, and compose and decompose numbers 0-1,200. Students will be able to locate, name and place numbers on an open number line. Students will continue to practice their numeracy skills using larger and larger numbers as they go through future grades. Students will use this knowledge in their everyday life when working with numbers, and...
apply this learning when using place value strategies to solve addition and subtraction problems. Students will apply this learning when using place value strategies to solve addition and subtraction problems.

Big Ideas:
- The base 10 number system uses digits 0-9, groups of 10 and place value to understand number structure.
- Any number can be represented in a number of ways that have the same quantity.
- Numbers, expressions, and measures can be compared by their value.

Essential Questions:
- What is the difference between a digit and a value? How many digits in our number system? What is a group of 10?
- How many ways can you represent a number?
- How do you compare numbers? How do you order numbers?
- Why do you need to know how to decompose and compose numbers?

<table>
<thead>
<tr>
<th>Concepts within Unit #6</th>
<th>TEKS Link to TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Reading and Writing Numbers 0-1,200</td>
<td>2.2A, 2.2B</td>
</tr>
<tr>
<td>Concept #2: Compose and Decompose Numbers 0-1,200</td>
<td>2.2A, 2.2B</td>
</tr>
<tr>
<td>Concept #3: Comparing and Ordering Numbers 0-1,200</td>
<td>2.2C, 2.2D, 2.2E, 2.2F, 2.7A, 2.7B, 2.9C</td>
</tr>
</tbody>
</table>
Grading Period 3

Unit 7: Addition and Subtraction to 1,000

Estimated Date Range: January 8 - 23

Unit Overview: In this unit, students will continue to build on addition and subtraction fact fluency from kindergarten (to 10) and first grade (to 20). Students will work with larger numbers to solve one-step and multi-step addition and subtraction word problems. Students will make connections between place value and operations and explore number sentences. Adding and subtracting with money and data from graphs will also be used to solve and create addition and subtraction problems that relate to the real world. Students will continue to add and subtract larger and larger whole numbers and decimals and fractions in future grades.

Big Ideas:
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The base 10 system helps students solve addition and subtraction with understanding.
- Numerical expressions can be represented in different but equivalent ways to make calculations simpler.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations so solutions can be found.

Essential Questions:
- What do you do to solve a problem?
- Why is place value important when solving addition and subtraction problems?
- How can an addition or subtraction number sentence apply to real world situations?

<table>
<thead>
<tr>
<th>Concepts within Unit #7</th>
<th>TEKS Link to TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Addition and Subtraction to 1,000</td>
<td>2.2A, 2.2B, 2.4A, 2.4B, 2.4C, 2.4D, 2.7C, 2.10C</td>
</tr>
</tbody>
</table>

Unit 8: Money and Personal Financial Literacy

Estimated Date Range: Jan. 24 – Feb. 8

Unit Overview: In this unit, students will use their prior knowledge on identifying and assigning a value to coins to count a collection of coins and write the amount using symbols and a decimal point. Students will also learn about financial matters including saving, spending, borrowing and lending. Financial literacy includes knowing the difference between producers and consumers and how much it costs to produce something. Future learning around money and financial literacy will aide students in working with decimals and help them become financially responsible adults, as students learn about spending, saving, giving and balancing a budget.

Big Ideas:
- All pieces of money have a specific value.
- An amount of money can be represented using different combinations of pieces of money.
- Money is used to satisfy needs and wants.
- Important personal finance knowledge and skills help people become financially capable and responsible to make decisions when it comes to satisfying needs and wants.

Essential Questions:
- What is the value of money?
- Are their different ways of getting to the same amount?
- How is money used?

<table>
<thead>
<tr>
<th>Concepts within Unit #8</th>
<th>TEKS Link to TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Money</td>
<td>2.5A, 2.5B</td>
</tr>
</tbody>
</table>
Concept #2: Personal Financial Literacy

2.11A, 2.11B, 2.11C, 2.11D, 2.11E, 2.11F

Unit 9: Length

Estimated Date Range: Feb. 11 – March 1

Unit Overview: In this unit, students will build from their understanding of nonstandard units of length to standard units of length. Students will measure using customary and metric measuring tools to the nearest marked unit. They will be able to explain the relationship between the number of units needed and the size of the unit and use this knowledge to estimate length. They will determine area with concrete models counting squares and knowing that the number of squares represents the area in square units. This will build in future years to measuring and converting units of length and determining and using the formula for area and then finding surface area.

Big Ideas:

- Some attributes of objects are measurable and can be quantified using unit amounts. The longer the unit of measure, the fewer units it takes to measure the object.
- Any measure can be represented in different ways that have the same value.
- Measures can be compared by their relative values.
- Measurements can be approximated using known referents as the units in the measurement process.

Essential Questions:

- How can we measure objects? Why do measurements need both numbers and units? Why do we need standard units in measurement?
- How do we choose the best unit of measurement to use?
- What objects can you use to estimate length?
- Why do we need standard units in measurement?

Concepts within Unit #9

<table>
<thead>
<tr>
<th>Concept</th>
<th>TEKS Link to TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Nonstandard and Customary Units</td>
<td>2.9A, 2.9B, 2.9C, 2.9D, 2.9E</td>
</tr>
<tr>
<td>Concept #2: Nonstandard and Metric Units</td>
<td>2.9A, 2.9B, 2.9C, 2.9D, 2.9E</td>
</tr>
<tr>
<td>Concept #3: Area</td>
<td>2.4C, 2.9F</td>
</tr>
</tbody>
</table>

Unit 10: Multiplication and Division

Estimated Date Range: March 4 - 22

Unit Overview: In this unit, students will build on their knowledge of repeated addition and subtraction to bridge to multiplication and division. Students will model multiplication and division situations with objects and pictures. They will also create and describe multiplication and division situations in relation to repeated addition and subtraction, such as 4 + 4 + 4 is 3 groups of 4 and There were 3 bags with 4 cookies in each bag. This will help students begin to understand the meaning of multiplication and division and basic facts which will bridge to larger numbers in third grade and future grades.

Big Ideas:

- Numerical expressions can be represented in different but equivalent ways to make calculations simpler.
- For a given set of numbers there are relationships that are always true.

Essential Questions:

- How do I know where to begin when solving a problem?
- What is the relationship between the numbers presented?

Concepts within Unit #10

<table>
<thead>
<tr>
<th>Concept</th>
<th>TEKS Link to TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Multiplication</td>
<td>2.6A</td>
</tr>
<tr>
<td>Concept #2: Division</td>
<td>2.6B</td>
</tr>
</tbody>
</table>

Grading Period 4
Unit 10: Multiplication and Division (Continued)

Estimated Date Range: March 4 - 22

Unit Overview: In this unit, students will build on their knowledge of repeated addition and subtraction to bridge to multiplication and division. Students will model multiplication and division situations with objects and pictures. They will also create and describe multiplication and division situations in relation to repeated addition and subtraction, such as 4 + 4 + 4 is 3 groups of 4 and There were 3 bags with 4 cookies in each bag. This will help students begin to understand the meaning of multiplication and division and basic facts which will bridge to larger numbers in third grade and future grades.

Big Ideas:
- Numerical expressions can be represented in different but equivalent ways to make calculations simpler.
- For a given set of numbers there are relationships that are always true.

Essential Questions:
- How do I know where to begin when solving a problem?
- What is the relationship between the numbers presented?

<table>
<thead>
<tr>
<th>Concepts within Unit #10</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #2: Division</td>
<td>2.6B</td>
</tr>
<tr>
<td>Concept #3: Multiplication and Division</td>
<td>2.6A, 2.6B</td>
</tr>
</tbody>
</table>

Unit 11: Fractions

Estimated Date Range: March 25 – April 12

Unit Overview: In this unit, students will expand on their knowledge of partitioning objects into halves and fourths to include eighths. They will not only partition objects but also know how many fractional parts are needed to make a whole and be able to count the fractional parts beyond a whole. Students will be able to explain that the number of fractional parts needed for a whole is proportional to the size of the fractional part. Applying their understanding that fractional pieces need to be the same size to identifying examples and non-examples of halves, fourths and eighths will allow students to generalize to other fractional amounts. Though much time is spent on whole numbers in elementary, beginning in 4th grade, students apply their understanding of fractions to computation. Being able to visual fractional representations will allow students to more easily compose and decompose and manipulate fractions.

Big Ideas:
- Any number can be represented in an infinite number of ways that have the same value.
- A comparison of a part to the whole can be represented using a fraction. A fraction can be a number.
- The relationship between the amount of fractional parts and size of the parts is foundational for comparing fractions.

Essential Questions:
- What is a fraction?
- Why is it important to understand the relationship between amount of fractional parts and size of the parts?

<table>
<thead>
<tr>
<th>Concepts within Unit #11</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Identify and Partition Halves, Fourths and Eighths</td>
<td>2.3A, 2.3D, 2.8E</td>
</tr>
<tr>
<td>Concept #2: Fractional Part Relationships, a Whole and Beyond</td>
<td>2.3A, 2.3B, 2.3C, 2.3D, 2.8E</td>
</tr>
</tbody>
</table>

Unit 12: Time

Estimated Date Range: April 15 - 30

Unit Overview: In this unit, students will build on their ability to tell time to the hour and half hour to tell time to the minute. Students will be able to read and write time, knowing that the colon separates the minutes and the hours. They should also be able to determine activities and times that occur in the a.m. and p.m. This will help students in future grades determine the duration of events.
Big Ideas:
- Understanding time as a unit of measure that breaks our day into increments is a vital life skill

Essential Questions:
- Understanding time as a unit of measure that breaks our day into increments is a vital life skill

<table>
<thead>
<tr>
<th>Concepts within Unit #12</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Time</td>
<td>2.2F, 2.9G</td>
</tr>
</tbody>
</table>

Unit 13: Addition and Subtraction to 1,000

Estimated Date Range: May 1 - 24

Unit Overview: In this unit, students will expand on their ability to add and subtract beyond basic facts to within 1,000 with two and three digit numbers. Students will represent and solve one-step and multi-step addition and subtraction word problems when the unknown is in any position in the problem. Students will also create word problems when given number sentences. Determining the action required from a story problem has students apply their understanding to real world problems which is the key to operational fluency. In future grades students will add and subtract with increasingly larger whole numbers then decimals and fractions.

Big Ideas:
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The base 10 system helps students solve addition and subtraction with understanding.
- Numerical expressions can be represented in different but equivalent ways to make calculations simpler.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations so solutions can be found.

Essential Questions:
- What do you do to solve a problem?
- Why is place value important when solving addition and subtraction problems?
- How can an addition or subtraction number sentence apply to real world situations?

<table>
<thead>
<tr>
<th>Concepts within Unit #13</th>
<th>TEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Addition and Subtraction to 1,000</td>
<td>2.4A, 2.4B, 2.4C, 2.4D, 2.7C, 2.10C</td>
</tr>
</tbody>
</table>