Math Grade 5
Overview
2019 - 2020

This document is designed to provide parents/guardians/community an overview of the curriculum taught in the FBISD classroom. Included, is an overview of the Mathematics Instructional Model and Pacing, TEKS, Unit Overview, Big Ideas, Essential Questions, and Concepts for each unit.

Definitions:

Overview – The content in this document provides an overview of the pacing and concepts covered in a subject for the year.

TEKS – Texas Essential Knowledge and Skills (TEKS) are the state standards for what students should know and be able to do.

Process Standards – The process standards describe ways in which students are expected to engage in the content. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use knowledge learned efficiently and effectively in daily life.

Unit Overview – The unit overview provides a brief description of the concepts covered in each unit.

Big Ideas and Essential Questions - Big ideas create connections in learning. They anchor all the smaller isolated, facts together in a unit. Essential questions (questions that allow students to go deep in thinking) should answer the big ideas. Students should not be able to answer Essential Questions in one sentence or less. Big ideas should be the underlying concepts, themes, or issues that bring meaning to content.

Concept – A subtopic of the main topic of the unit

Instructional Model – The structures, guidelines or model in which students engage in a particular content that ensures understanding of that content.

Parent Supports:

The following resources provide parents with ideas to support students in mathematical understanding

- Advice for Parents: Helping Children with Math
- How Math Should be Taught
- The Most Important Mathematical Habit of Mind
- Math: Why Doesn’t Yours Look Like Mine?
Instructional Model and Math Workshop:

The instructional model for mathematics is the Concrete-Representational-Abstract Model (CRA). The CRA model allows students to access mathematics content first through a concrete approach (“doing” stage) then representational (“seeing” stage) and then finally abstract (“symbolic” stage). The CRA model allows students to conceptually develop concepts so they have a deeper understanding of the mathematics and are able to apply and transfer their understanding across concepts and contents. The CRA model is implemented in grades K-12 in FBISD.

During math instruction in grades K-8 in FBISD, we follow the Math Workshop structures. Instruction during a math class follows one of the three structures: Task and Share, Mini Lesson, Guided Math and Learning Stations, and Guided Math and Learning Stations. The structure that is used each day is determined by the content covered as well as student need.

<table>
<thead>
<tr>
<th>Task and Share</th>
<th>Mini Lesson, Guided Math and Learning Stations</th>
<th>Guided Math and Learning Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Sense Routine</td>
<td>Number Sense Routine</td>
<td>Number Sense Routine</td>
</tr>
<tr>
<td>Math Task</td>
<td>Mini Lesson</td>
<td>Guided Math</td>
</tr>
<tr>
<td>Task Share and Student Reflective Closure</td>
<td>Student Reflective Closure</td>
<td>Student Reflective Closure</td>
</tr>
</tbody>
</table>

Number Sense Routine – An engaging accessible, purposeful routine to begin math class that promotes a community of positive mathematics discussion and thinking.

Math Task – A problem-solving task that students work on in small groups. The teacher monitors and probes student thinking through questions. The task should have multiple entry points, allowing for all students to have access to the problem.

Task Share with Student Reflective Closure – Students come together as a whole class and discuss the various strategies they used to solve a rich mathematical task. Students ask questions, clarify their thinking, modify their work, and add to their collection of strategies.

Mini Lesson – A well-planned whole group lesson focused on the day’s learning intention and accessible to all levels of learners.

Guided Math – Small group instruction that allows the teacher to support and learn more about students’ understandings and misconceptions. Can include intervention, more on-level support, or enrichment.

Learning Stations – Activity in which students engage in meaningful mathematics and are provided with purposeful choices. Could include individual, partner or group tasks.

Student Reflective Closure – A deliberate and meaningful time for students to reflect on what they’ve learned and experienced during a math task, at activities in learning stations, or in a guided math group.
Adopted Resources:

Elementary: https://www.fortbendisd.com/Page/93917

Mathematical Process Standards:

The student uses mathematical process to acquire and demonstrate mathematical understanding. The student is expected to:

- **5.1A** Apply mathematics to problems arising in everyday life, society, and the workplace
- **5.1B** Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution
- **5.1C** Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems
- **5.1D** Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate
- **5.1E** Create and use representations to organize, record, and communicate mathematical ideas
- **5.1F** Analyze mathematical relationships to connect and communicate mathematical ideas
- **5.1G** Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication

Grading Period 1

Unit 1: Creating a Mathematical Community through Graphing

Estimated Date Range: Aug. 14 – Aug. 20

Unit Overview: In this unit, students will get an introduction to graphing. This unit is set up with graphing ideas to help teachers and students to learn about each other. Though the focus of graphing in fifth grade is to represent fractional and decimal data, students will be creating a frequency and bar graph during this first week to analyze information using whole numbers. Students have had previous experiences in 4th grade with bar graphs, frequency tables, dot plots and stem and leaf plots. When students exit 5th grade they should master representing and solving problems with graphs. Setting up the routines for Guided Math and several work stations is the primary focus for this unit. The work stations will provide teachers with information about concepts students should have mastered in fourth grade.

Big Ideas:

- Data helps us makes sense of information in our world.
- Organization of information shows relationships.

Essential Questions:

- What kinds of problems can we solve when we analyze data?
- How does a graph help with representing data?

Concepts within Unit #1

<table>
<thead>
<tr>
<th>Concept #1: Graphing and Setting Up Guided Math</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.3K, 5.9A, 5.9C</td>
</tr>
</tbody>
</table>
Unit 2: Whole Number Operations and Graphing
Estimated Date Range: Aug. 21 – Sep. 19

Unit Overview: In this unit, students will estimate sums, differences, products and quotients. Students will also add, subtract, multiply and divide whole numbers with and without a problem solving setting. They will find the perimeter, area and volume of figures. Students will use their knowledge of multiplication and factors to identify prime and composite numbers. Students will also use their previous knowledge with graphing to solve one and two step word problems involving.

Big Ideas:
• Addition and its inversely related operation, subtraction, as well as multiplication and division, are powerful foundational concepts in mathematics, with applications to many problem situations and connections to many other topics.
• Solving multi step problems allows students to become better problem solvers in their everyday lives.
• When placed in context, perimeter area and volume allow students to use reasonableness to determine when a real-world problem involves perimeter, area and volume.
• Data summarized in graphs help us make sense of information in our world.

Essential Questions:
• Why is it important to add and subtract positive rational numbers fluently?
• What is the importance of adding, subtracting, multiplying and dividing numbers?
• Why is solving problems in multiple ways important?
• What is the importance of students understanding perimeter, area and volume?
• How do real world situations support the understanding of perimeter, area and volume?
• How does a graph help with representing data?

Concepts within Unit #2

<table>
<thead>
<tr>
<th>Concept</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Estimating and Finding Sums with Whole Numbers</td>
<td>5.3A, 5.3K, 5.4B</td>
</tr>
<tr>
<td>Concept #2: Estimating and Finding Products with Whole Numbers</td>
<td>5.3A, 5.3B, 5.4B</td>
</tr>
<tr>
<td>Concept #3: Perimeter, Area and Volume</td>
<td>5.3B, 5.3K, 5.4B, 5.4H</td>
</tr>
<tr>
<td>Concept #4: Patterns, Estimating, and Finding Quotients</td>
<td>5.3A, 5.3C, 5.4B</td>
</tr>
<tr>
<td>Concept #5: Prime and Composite Numbers</td>
<td>5.4A</td>
</tr>
<tr>
<td>Concept #6: Graphing with Whole Numbers</td>
<td>5.9A, 5.9C</td>
</tr>
</tbody>
</table>

Unit 3: Decimals
Estimated Date Range: Sep. 20 – Oct. 10

Unit Overview: In this unit, students will compare and order two decimals to thousandths and represent comparisons using symbols. They will also represent the value of digits in decimals through the thousandths place using concrete objects, pictorial models, expanded form/notation and numerals. Students will also round decimals to the tenths or hundredths place.

Big Ideas:
• The base 10 number system uses digits 0-9, groups of 10 and place value to understand number structure.
• Numbers, expressions, and measures can be compared by their relative values.
• Estimation in a necessary skill for students to master because it is very useful in everyday calculations of all kind.
• Place value is essential when determining what the value of a specific digit in a number is. It is relevant to real life. Ex: money

Essential Questions:
• How does the position of a digit in a number affect its value?
• How do you compare two numbers?
• Why is estimation important for students?
• Why is the place value of a number important when rounding decimals?

Concepts within Unit #3

Concept #1: Represent the Value of a Digit	5.2A
Concept #2: Compare and Order Decimals	5.2A, 5.2B, 5.2C
Concept #3: Rounding Decimals	5.2C

Grading Period 2

Unit 4: Decimal Operations

Estimated Date Range: Oct. 15 – Nov. 12

Unit Overview: In this unit, students will apply their understanding of operations with whole numbers to add, subtract, multiply and divide decimals, including situations involving money and determining the area, perimeter and volume of shapes. Students will represent these decimal operations by using objects, pictorial models and algorithms. They will also use strategies based on understanding place value and properties of operations. Lastly, students will graph and analyze data using stem-and-leaf plots. Students will transition in future grades to negative numbers.

Big Ideas:
• Students will learn that each position of a number has a value of 10 times the place to its right and 1/10 of the value to the left.
• Students will learn that rules for whole number operations also apply to decimal operations.
• Students will receive the conceptual understanding that when multiplying decimals by decimals, products decrease.
• Students will receive a conceptual understanding of solving for quotients of decimals.
• Students will conceptually understand how to interpret remainders.
• Students will understand that numbers less than 1 whole can also be divided.
• Students will learn that data helps us makes sense of information in our world.

Essential Questions:
• How does the position of a digit in a number affect its value?
• How do operations with whole numbers support understanding decimal operations?
• Why do decimal products decrease when multiplying decimals by decimals?
• What does solving for decimal quotients mean and look like?
• What do remainders represent when solving division problems?
• When dividing, is the large number always the dividend?
• How does a graph help with representing data?

Concepts within Unit #4

<p>| Concept #1: Adding and Subtracting Decimals | 5.3A, 5.3K |</p>
<table>
<thead>
<tr>
<th>Concept #2: Solve for Products of Decimals</th>
<th>5.3A, 5.3D, 5.3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #3: Solve for Decimal Quotients</td>
<td>5.3A, 5.3F, 5.3G</td>
</tr>
<tr>
<td>Concept #4: Graphing Stem-and-Leaf</td>
<td>5.3E, 5.3G, 5.3K, 5.9A, 5.9C</td>
</tr>
</tbody>
</table>

Unit 5: Data Analysis and Graphing
Estimated Date Range: Nov. 13 – Dec. 05

Unit Overview: In this unit, students will graph ordered pairs of numbers in the first quadrant of the coordinate plane, recognize the difference between additive and multiplicative patterns in a table or graph, and create and analyze data using a scatter plot. In previous grades, students represented problems using input-output tables and numerical expressions to generate a number pattern that follows a given rule. Students in future grades will graph ordered pairs in all four quadrants of the coordinate plane and continue to analyze data in a variety of graphical representations.

Big Ideas:
- Patterns help students solve real world problems.
- Data can be displayed using a variety of charts, tables, and graphs.
- Graphing data gives a visual representation that helps with interpretation.

Essential Questions:
- Why is finding patterns useful?
- What are some ways we can organize data?
- How can we interpret data found in graphs to solve real-world problems?

Concepts within Unit #5
TEKS (Link to Math TEKS)

| Concept #1: Ordered Pairs | 5.8A, 5.8B, 5.8C |
| Concept #2: Scatterplots | 5.9A, 5.9B, 5.9C |

Unit 6: Fractions
Estimated Date Range: Dec. 06 – Dec. 19

Unit Overview: In this unit, students will perform mathematical operations using fractions. Fourth grade students added and subtracted fractions with like denominators. Students will represent problems that involve operations with fractions, not just solve. Addition and subtraction will take place with fractions and fractions, fractions and whole numbers and fractions and mixed numbers. Fractions may not have the same denominator so students will need to use strategies such as decomposing and composing fractions not just finding a common denominator. Multiplication and division of fractions involves a fraction and a whole number only. Students will explore creating and analyzing data with dot plots involving fractional data.

Big Ideas:
- Students will learn that good mathematicians know that mathematics provides a variety of ways to express relationships between numbers. A CRA model is a great representation that shows numerical processes in concrete, representation, and abstract form.
- Students will observe that models provide a visual representation of why numbers are related in addition to how. It provides students a foundation to make sense of numbers expressed in different forms.
- Students will use concrete models or create pictorial models to compare fractions with unlike denominators.
- Students will learn that fractions represent parts of a whole. Therefore, for instance when breaking the whole into two equal parts, each part represents $\frac{1}{2}$. When breaking a whole into 4 equal parts, each
fractional part represents \(\frac{1}{4} \). The more the whole is broken into, the smaller each piece is, therefore student will learn that \(\frac{2}{4} \) is equal to the same value as \(\frac{1}{2} \).

- Students will use fraction strips or towers to discover that fractions represent part of a whole. Since two halves represent 1 whole, it can also be expressed as \(\frac{2}{2} \).
- Students will use number lines to represent fractional parts between whole numbers. In this process, they will discover that they can count on to represent improper fractions, such as \(\frac{4}{3} \). It falls between 1 and 2, so it represents a value of 1 whole and \(\frac{1}{3} \).
- Students will discover through fraction strips and pictorial models that when dividing whole numbers by fractions, the answer represents the total amount of fractional parts represented. Therefore, the total is counted.
- Students will learn that any number of value can be divided. When dividing fractions, their quotient will represent a lesser value.
- Students will receive opportunities to graph data on dot plots to make real life connections to what data represents and how they can represent it on graphs.
- Students will create and represent data to help them make sense of information in our world. In addition, they will learn that graphs help organize data, which is easier to read.

Essential Questions:

- How do we show relationships between numbers?
- How can models help us see how numbers are related?
- How can students determine if a fraction is larger or smaller than another fraction with an unlike denominator?
- How can fractions be represented in many ways?
- How can 1 whole be represented as a fraction?
- How can number lines be used to convert improper fractions to mixed or whole numbers?
- Why is it that when dividing whole numbers by fractions, their quotient is large?
- How can we divide a number less than 1 whole, such as a fraction?
- What kinds of problems can we solve when we analyze data?
- How does a graph help with representing data?

<table>
<thead>
<tr>
<th>Concepts within Unit #6</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Prime and Composite Numbers</td>
<td>5.4A</td>
</tr>
<tr>
<td>Concept #2: Adding and Subtracting Fractions</td>
<td>5.3H, 5.3K</td>
</tr>
<tr>
<td>Concept #3: Multiplying Fractions and Whole Numbers</td>
<td>5.3I</td>
</tr>
<tr>
<td>Concept #4: Dividing Fractions</td>
<td>5.3J, 5.3L</td>
</tr>
<tr>
<td>Concept #5: Dot Plots with Fractions</td>
<td>5.3H, 5.3K, 5.9A, 5.9C</td>
</tr>
</tbody>
</table>
Grading Period 3

Unit 6: Fractions (cont.)

Estimated Date Range: Jan. 07 – Jan. 31

Unit Overview: In this unit, students will perform mathematical operations using fractions. Fourth grade students added and subtracted fractions with like denominators. Students will represent problems that involve operations with fractions, not just solve. Addition and subtraction will take place with fractions and fractions, fractions and whole numbers and fractions and mixed numbers. Fractions may not have the same denominator so students will need to use strategies such as decomposing and composing fractions not just finding a common denominator. Multiplication and division of fractions involves a fraction and a whole number only. Students will explore creating and analyzing data with dot plots involving fractional data.

Big Ideas:

- Students will learn that good mathematicians know that mathematics provides a variety of ways to express relationships between numbers. A CRA model is a great representation that shows numerical processes in concrete, representation, and abstract form.
- Students will observe that models provide a visual representation of why numbers are related in addition to how. It provides students a foundation to make sense of numbers expressed in different forms.
- Students will use concrete models or create pictorial models to compare fractions with unlike denominators.
- Students will learn that fractions represent parts of a whole. Therefore, for instance when breaking the whole into two equal parts, each part represents \(\frac{1}{2} \). When breaking a whole into 4 equal parts, each fractional part represents \(\frac{1}{4} \). The more the whole is broken into, the smaller each piece is, therefore student will learn that \(\frac{2}{4} \) is equal to the same value as \(\frac{1}{2} \).
- Students will use fraction strips or towers to discover that fractions represent part of a whole. Since two halves represent 1 whole, it can also be expressed as \(\frac{2}{2} \).
- Students will use number lines to represent fractional parts between whole numbers. In this process, they will discover that they can count on to represent improper fractions, such as \(\frac{4}{3} \). It falls between 1 and 2, so it represents a value of 1 whole and \(\frac{1}{3} \).
- Students will discover through fraction strips and pictorial models that when dividing whole numbers by fractions, the answer represents the total amount of fractional parts represented. Therefore, the total is counted.
- Students will learn that any number of value can be divided. When dividing fractions, their quotient will represent a lesser value.
- Students will receive opportunities to graph data on dot plots to make real life connections to what data represents and how they can represent it on graphs.
- Students will create and represent data to help them make sense of information in our world. In addition, they will learn that graphs help organize data, which is easier to read.

Essential Questions:

- How do we show relationships between numbers?
- How can models help us see how numbers are related?
- How can students determine if a fraction is larger or smaller than another fraction with an unlike denominator?
- How can fractions be represented in many ways?
- How can 1 whole be represented as a fraction?
- How can number lines be used to convert improper fractions to mixed or whole numbers?
• Why is it that when dividing whole numbers by fractions, they quotient is large?
• How can we divide a number less than 1 whole, such as a fraction?
• What kinds of problems can we solve when we analyze data?
• How does a graph help with representing data?

<table>
<thead>
<tr>
<th>Concepts within Unit #6</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #2: Adding and Subtracting Fractions</td>
<td>5.3H, 5.3K</td>
</tr>
<tr>
<td>Concept #3: Multiplying Fractions and Whole Numbers</td>
<td>5.3I</td>
</tr>
<tr>
<td>Concept #4: Dividing Fractions</td>
<td>5.3J, 5.3L</td>
</tr>
<tr>
<td>Concept #5: Dot Plots with Fractions</td>
<td>5.3H, 5.3K, 5.9A, 5.9C</td>
</tr>
</tbody>
</table>

Unit 7: Expressions and Equations

Estimated Date Range: Feb. 03 – Feb. 19

Unit Overview: In this unit, students will represent and solve multi-step problems involving the four operations with whole numbers using equations with a letter as a variable. Students will determine the numerical pattern by being given a rule and determine the rule from a numerical pattern. They will also solve expressions that contain parentheses and brackets and describe the meaning of their use in the expression. This is laying the foundation for future algebraic understanding/reasoning.

Big Ideas:
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The context of a problem determines the reasonableness of a solution.
- The ability to solve problems is the heart of mathematics.

Essential Questions:
- How do I know where to begin when solving a problem?
- How do I know when a result is reasonable?
- Why is the ability to solve problems the heart of mathematics?

<table>
<thead>
<tr>
<th>Concepts within Unit #7</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Numerical Patterns</td>
<td>5.3K, 5.4C, 5.4D, 5.8C</td>
</tr>
<tr>
<td>Concept #2: Numerical Expressions</td>
<td>5.3B, 5.3C, 5.4E, 5.4F</td>
</tr>
<tr>
<td>Concept #3: Multistep Problems with an Unknown</td>
<td>5.4B, 5.8C</td>
</tr>
</tbody>
</table>
Unit 8: Measurement and Geometry

Estimated Date Range: Feb. 20 – Mar. 06

Unit Overview:
In this unit, students will build off their knowledge of customary and metric units of measure to be able to convert within customary or metric measurements. Students will also solve for area, perimeter and volume of shapes understanding that area and perimeter are found for two-dimensional shapes while volume is found for three-dimensional shapes. This will build to calculating surface area of shapes in future grades.

Big Ideas:
- Good mathematicians know that measurement helps us understand and describe our world.
- To solve real-life problems as well as mathematical problems, you need to understand the relationship between perimeter, area, and volume.
- Fluently solving problems using all four operations, equips students with vital tools in life that can help students become confident, efficient, and effective problem-solver.

Essential Questions:
- How does measurement help us understand and describe our world?
- Why is it important to understand the relationship between perimeter, area, and volume?
- Why is it important to solve math problems with multiple concepts?

Concepts within Unit #8

<table>
<thead>
<tr>
<th>Concept</th>
<th>TEKS [Link to Math TEKS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Converting Customary Units</td>
<td>5.3B, 5.3E, 5.7A</td>
</tr>
<tr>
<td>Concept #2: Converting Metric Units</td>
<td>5.3B, 5.3E, 5.7A</td>
</tr>
</tbody>
</table>

Grading Period 4

Unit 8: Measurement and Geometry (cont.)

Estimated Date Range: Mar. 16 – Mar. 24

Unit Overview:
In this unit, students will build off their knowledge of customary and metric units of measure to be able to convert within customary or metric measurements. Students will also solve for area, perimeter and volume of shapes understanding that area and perimeter are found for two-dimensional shapes while volume is found for three-dimensional shapes. This will build to calculating surface area of shapes in future grades.

Big Ideas:
- Good mathematicians know that measurement helps us understand and describe our world.
- To solve real-life problems as well as mathematical problems, you need to understand the relationship between perimeter, area, and volume.
- Fluently solving problems using all four operations, equips students with vital tools in life that can help students become confident, efficient, and effective problem-solver.

Essential Questions:
- How does measurement help us understand and describe our world?
- Why is it important to understand the relationship between perimeter, area, and volume?
- Why is it important to solve math problems with multiple concepts?

Concepts within Unit #8

<table>
<thead>
<tr>
<th>Concept</th>
<th>TEKS [Link to Math TEKS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #3: Area, Perimeter, Volume, and Two-dimensional figures</td>
<td>5.3B, 5.3E, 5.3K, 5.4G, 5.4H, 5.5A, 5.6A, 5.6B</td>
</tr>
</tbody>
</table>
Unit 9: Personal Financial Literacy
Estimated Date Range: Mar. 25 – Mar. 31

Unit Overview: In this unit, students will define income, payroll, sales, and property tax and explain the difference between gross income and net income. Students will identify the advantages and disadvantages of different types of payment, including check, credit card, debit card, and electronic payments and develop a way of keeping track of their spending and income. Students will build off their knowledge of expenses and saving describe how they might balance a budget when expenses exceed income. Students will continue to learn about financial matters, such as borrowing, saving, spending and budgeting. Learning to be fiscally responsible will help students make financial decisions for the rest of their lives.

Big Ideas:
• Important personal finance knowledge and skills help people become financially capable and responsible to make decisions when it comes to satisfying needs and wants.
• Understanding finances and using them effectively are essential to financial security.
• Mathematical operations and strategies are used to represent and solve a variety of problem situations in everyday life.

Essential Questions:
• How can a person be financially secure?
• Why is fluency in computing important in life?
• How does understanding numerical operations help us use money?

<table>
<thead>
<tr>
<th>Concepts within Unit #9</th>
<th>TEKS [Link to Math TEKS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Personal Financial Literacy</td>
<td>5.3K, 5.10A, 5.10B, 5.10C, 5.10D, 5.10E, 5.10F</td>
</tr>
</tbody>
</table>

Unit 10: Fractions Operations with Word Problems
Estimated Date Range: Apr. 01 – Apr. 20

Unit Overview: In this unit, students will review multiplying and dividing decimals and fractions in problem solving situations. They will represent problems with concrete models and visual representations as well as use strategies based on understanding place value and properties of operations, not just algorithms to solve. Students will transition in future grades to more algebraic equations that involve negative numbers.

Big Ideas:
• Addition and its inversely related operation, subtraction, as well as multiplication and division, are powerful foundational concepts in mathematics, with applications to many problem situations and connections to many other topics.
• Solving multi step problems allows students to become better problem solvers in their everyday lives.
• Operations create relationships between numbers.
• Rules for whole number operations also apply to decimal operations.

Essential Questions:
• What is the importance of adding, subtracting, multiplying and dividing numbers?
• Why is solving problems in multiple ways important?
• How does the position of a digit in a number affect its value?
• How do operations with whole numbers support understanding decimal operations?
Concepts within Unit 10

<table>
<thead>
<tr>
<th>Concept #1: Operations with Fractions in Problem Solving</th>
<th>TEKS [Link to Math TEKS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #2: Operations with Decimals in Problem Solving</td>
<td>5.3D, 5.3E, 5.3F, 5.3G</td>
</tr>
</tbody>
</table>

Unit 11: Solidifying Fifth Grade

Estimated Date Range: Apr. 21 – May 28

Unit Overview: In this unit, students will review fifth grade skills to solidify their understanding so they are successful sixth graders. They will focus primarily on numeracy and computational skills as well as measurement.

Big Ideas:
- The base 10 number system uses digits 0-9, groups of 10 and place value to understand number structure.
- Numbers, expressions, and measures can be compared by their relative values.
- Operations create relationships between numbers.
- Rules for multiplication and division of whole numbers also apply to decimals.
- Fluently solving problems with all four operations, equips students with vital tools in life that can help students build the positive attitudes that will help them become confident, efficient and effective problem-solvers.
- Solving multi step problems allows students to become better problem solvers in their everyday lives.

Essential Questions:
- How does the position of a digit in a number affect its value?
- How do you compare two numbers? Why is this important?
- Why do I need decimal operations?
- How does multiplying or dividing by a power of ten affect the product?
- How do the rules of multiplying whole numbers relate to multiplying decimals?
- Why is it important to add and subtract positive rational numbers fluently?
- How do I know where to begin when solving a problem?
- Why is it important to solve multi-step math problems?

<table>
<thead>
<tr>
<th>Concept #1: Decimals</th>
<th>TEKS [Link to Math TEKS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #2: Multiplication and Division</td>
<td>5.4B</td>
</tr>
<tr>
<td>Concept #3: Fractions</td>
<td>5.3I, 5.3L</td>
</tr>
<tr>
<td>Concept #4: Measurement</td>
<td>5.4H</td>
</tr>
</tbody>
</table>