Math Grade 1 Overview
2019 - 2020

This document is designed to provide parents/guardians/community an overview of the curriculum taught in the FBISD classroom. Included, is an overview of the Mathematics Instructional Model and Pacing, TEKS, Unit Overview, Big Ideas, Essential Questions, and Concepts for each unit.

Definitions:

Overview – The content in this document provides an overview of the pacing and concepts covered in a subject for the year.

TEKS – Texas Essential Knowledge and Skills (TEKS) are the state standards for what students should know and be able to do.

Process Standards – The process standards describe ways in which students are expected to engage in the content. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use knowledge learned efficiently and effectively in daily life.

Unit Overview – The unit overview provides a brief description of the concepts covered in each unit.

Big Ideas and Essential Questions - Big ideas create connections in learning. They anchor all the smaller isolated, facts together in a unit. Essential questions (questions that allow students to go deep in thinking) should answer the big ideas. Students should not be able to answer Essential Questions in one sentence or less. Big ideas should be the underlying concepts, themes, or issues that bring meaning to content.

Concept – A subtopic of the main topic of the unit

Instructional Model – The structures, guidelines or model in which students engage in a particular content that ensures understanding of that content.

Parent Supports:

The following resources provide parents with ideas to support students in mathematical understanding

- [Advice for Parents: Helping Children with Math](#)
- [How Math Should be Taught](#)
- [The Most Important Mathematical Habit of Mind](#)
- [Math: Why Doesn’t Yours Look Like Mine?](#)
Instructional Model:

The instructional model for mathematics is the Concrete-Representational-Abstract Model (CRA). The CRA model allows students to access mathematics content first through a concrete approach (“doing” stage) then representational (“seeing” stage) and then finally abstract (“symbolic” stage). The CRA model allows students to conceptually develop concepts so they have a deeper understanding of the mathematics and are able to apply and transfer their understanding across concepts and contents. The CRA model is implemented in grades K-12 in FBISD.

Math Workshop:

During math instruction in grades K-8 in FBISD, we follow the Math Workshop structures. Instruction during a math class follows one of the three structures: Task and Share, Mini Lesson, Guided Math and Learning Stations, and Guided Math and Learning Stations. The structure that is used each day is determined by the content covered as well as student need.

<table>
<thead>
<tr>
<th>Task and Share</th>
<th>Mini Lesson, Guided Math and Learning Stations</th>
<th>Guided Math and Learning Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Sense Routine</td>
<td>Number Sense Routine</td>
<td>Number Sense Routine</td>
</tr>
<tr>
<td>Math Task</td>
<td>Mini Lesson</td>
<td>Guided Math</td>
</tr>
<tr>
<td>Task Share and Student Reflective Closure</td>
<td>Student Reflective Closure</td>
<td>Student Reflective Closure</td>
</tr>
</tbody>
</table>

Number Sense Routine – An engaging accessible, purposeful routine to begin math class that promotes a community of positive mathematics discussion and thinking.

Math Task – A problem-solving task that students work on in small groups. The teacher monitors and probes student thinking through questions. The task should have multiple entry points, allowing for all students to have access to the problem.

Task Share with Student Reflective Closure – Students come together as a whole class and discuss the various strategies they used to solve a rich mathematical task. Students ask questions, clarify their thinking, modify their work, and add to their collection of strategies.

Mini Lesson – A well-planned whole group lesson focused on the day’s learning intention and accessible to all levels of learners.

Guided Math – Small group instruction that allows the teacher to support and learn more about students’ understandings and misconceptions. Can include intervention, more on-level support, or enrichment.

Learning Stations – Activity in which students engage in meaningful mathematics and are provided with purposeful choices. Could include individual, partner or group tasks.

Student Reflective Closure – A deliberate and meaningful time for students to reflect on what they’ve learned and experienced during a math task, at activities in learning stations, or in a guided math group.
Adopted Resources:

Elementary: https://www.fortbendisd.com/Page/93917

Mathematical Process Standards:

The student uses mathematical process to acquire and demonstrate mathematical understanding. The student is expected to:

1.1A Apply mathematics to problems arising in everyday life, society, and the workplace
1.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution
1.1C Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems
1.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate
1.1E Create and use representations to organize, record, and communicate mathematical ideas
1.1F Analyze mathematical relationships to connect and communicate mathematical ideas
1.1G Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication

Grading Period 1

Unit 1: Creating a Mathematical Community through Graphing

Estimated Date Range: Aug. 14 – Aug. 20

Unit Overview: In this unit, students will build on their knowledge of picture graphs from Kindergarten and get an introduction to bar graphs, which is a new concept in First Grade. This unit is set up with graphing ideas to help teachers and students learn about each other and begin to develop routines and procedures for math class. Students collect and sort data and create picture and bar graphs. Students ask questions that can be determined from the information in the created graphs.

In addition to graphing, the intent of this unit is to establish a foundation for upcoming units by reinforcing and supporting student ownership of learning. The emphasis will be on the creation of a positive and respectful learning environment through highlighting attributes of Profile of a Graduate, Growth Mindset, and the implementation and support of structured Math Workshop routines and procedures. The goal is to build a community of learners with a mathematical mindset in which students value their mistakes and struggles, and feel safe to engage in mathematical discourse.

Big Ideas:

- Data helps us make sense of information in our world.
- Organization of information shows relationships.
- Data can be collected, organized, sorted, and analyzed in a variety of ways by creating real-object and picture graphs.

Essential Questions:

- Why and how do we sort information?
- How do graphs help you to interpret data?
- What are some ways we can organize data?
Unit 2: Numeration 0-20 and Addition & Subtraction 0-10
Estimated Date Range: Aug. 21 – Sep. 6

Unit Overview: In this unit, students will review representing numbers in different ways, comparing and ordering numbers to 20, and composing and decomposing numbers within 10. Students will also generate and solve addition and subtraction word problems within 10. As the year goes on, students will increase representing, comparing, ordering, composing and decomposing numbers to 120. They will generate and solve addition and subtraction word problems within 20 by the end of year. Understanding the quantity of 10 is the foundation of future numeracy as students work with larger and larger numbers.

Big Ideas:
- Numbers can be represented in a variety of ways that represent the same quantity.
- Numbers can be compared using symbols (> <, =), comparative language (greater than, less than, equal to), number lines, and place value.
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The context of a problem determines the reasonableness of a solution.

Essential Questions:
- How can numbers be manipulated?
- Why is it important to be able to compare numbers?
- How does finding the common characteristics among similar problems help me to be a more efficient problem solver?
- How do I know which mathematical operation to use?

<table>
<thead>
<tr>
<th>Concepts within Unit #2</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Recite, Generate, Subitize, Compose & Decompose Whole Numbers up to 20</td>
<td>1.2C, 1.2A, 1.2B, 1.3C, 1.5A</td>
</tr>
<tr>
<td>Concept #2: Compare and order numbers up to 20</td>
<td>1.2G, 1.2A, 1.2D, 1.2E, 1.2F</td>
</tr>
<tr>
<td>Concept #3: Addition and Subtraction 0-10</td>
<td>1.3B, 1.3F, 1.5D, 1.3C, 1.3D, 1.3E, 1.5E, 1.5F, 1.5G</td>
</tr>
</tbody>
</table>

Unit Overview: In this unit, students will build on their knowledge of two-dimensional shapes from Kindergarten to include rhombuses and hexagons. They will continue to classify and sort regular and irregular 2D shapes by their attributes as well as create 2D shapes. They will compose 2D shapes by joining 2 to 4 shapes. Two-dimensional shapes will be revisited later in the year. Students will continue to build their understanding of two-dimensional shapes in future years, adding additional shapes and determining perimeter and area of shapes as well as identifying angles.
Big Ideas:
- Geometric shapes are a representation of the world around us.
- Geometric shapes exist in the natural and the man-made world.
- Objects can be analyzed, sorted, and compared by attributes.
- Shapes have defining attributes that can be compared to other shapes.

Essential Questions:
- How do we use geometry to make sense of the real world?
- Where in the real world are there geometric shapes?
- What are the ways to describe shapes?
- How can objects be compared using descriptors from geometry?

Concepts within Unit #3	TEKS (Link to Math TEKS)
Concept #1: Classify, Sort and Describe 2D Shapes | 1.6A, 1.6D, 1.6B, 1.6C

Unit 4: Numeration 0-99 and Addition & Subtraction 0-20
Estimated Date Range: Sep. 19 – Oct. 10
Estimated Time Frame 23 days: (1st Grading Period – 15 days & 2nd Grading Period – 8 days)

Unit Overview: In this unit, students will continue to work within 20 to recognize, recite and generate numbers but will add use their understanding of adding and subtracting 10 to add and subtract within 20. Student will skip count by twos, fives, or tens to determine the total number of objects in a set up to 20. Students will use concrete and pictorial models to compose and decompose numbers up to 20 in more than one way and apply basic fact strategies to add and subtract within 20. They will explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences. Students will continue to recognize, recite, generate, add and subtract using larger and larger numbers.

Big Ideas:
- Numbers can be represented in a variety of ways that represent the same quantity.
- Numbers can be compared using symbols (>, <, =) and comparative language (greater than, less than, equal to).
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The context of a problem determines the reasonableness of a solution.

Essential Questions:
- How can numbers be manipulated?
- How can we compare numbers?
- Why is it important to be able to compare numbers?
- How does finding the common characteristics among similar problems help me to be a more efficient problem solver?
- How do I know where to begin when solving a problem?
- How do I know which mathematical operation to use?

Concepts within Unit #4	TEKS (Link to Math TEKS)
Concept #1: Counting to 99 | 1.2C, 1.2A, 1.2D, 1.5A, 1.5B, 1.5C
<table>
<thead>
<tr>
<th>Concept #2: Compose and Decompose 99 with Two or More Addends</th>
<th>1.2C, 1.2A, 1.2B, 1.3C, 1.3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #3: Compare and Order Numbers Up to 99</td>
<td>1.2G, 1.2B, 1.2C, 1.2D, 1.2E, 1.2F</td>
</tr>
<tr>
<td>Concept #4: Addition and Subtraction Word Problems to 20 with Unknowns</td>
<td>1.3B, 1.3F, 1.5D, 1.3A, 1.3C, 1.3D, 1.3E, 1.5E, 1.5F, 1.5G</td>
</tr>
</tbody>
</table>
Grading Period 2

Unit 4: Numeration 0-99 and Addition & Subtraction 0-20 (cont.)

Estimated Date Range: Oct. 15 – Oct. 24
Estimated Time Frame: 23 days (2nd Grading Period – 8 days)

Unit Overview: In this unit, students will continue to work within 20 to recognize, recite and generate numbers but will add use their understanding of adding and subtracting 10 to add and subtract within 20. Students will skip count by twos, fives, or tens to determine the total number of objects in a set up to 20. Students will use concrete and pictorial models to compose and decompose numbers up to 20 in more than one way and apply basic fact strategies to add and subtract within 20. They will explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences. Students will continue to recognize, recite, generate, add and subtract using larger and larger numbers.

Big Ideas:
- Numbers can be represented in a variety of ways that represent the same quantity.
- Numbers can be compared using symbols (> , <, =) and comparative language (greater than, less than, equal to).
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The context of a problem determines the reasonableness of a solution.

Essential Questions:
- How can numbers be manipulated?
- How can we compare numbers?
- Why is it important to be able to compare numbers?
- How does finding the common characteristics among similar problems help me to be a more efficient problem solver?
- How do I know where to begin when solving a problem?
- How do I know which mathematical operation to use?

<table>
<thead>
<tr>
<th>Concepts within Unit #4</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #4: Addition and Subtraction Word Problems to 20 with Unknowns (cont.)</td>
<td>1.3B, 1.3F, 1.5D, 1.3A, 1.3C, 1.3D, 1.3E, 1.5E, 1.5F, 1.5G</td>
</tr>
</tbody>
</table>

Unit 5: Numeration 0-99 and Addition & Subtraction 0-20 with Strengthening Word Problems

Estimated Date Range: Oct. 25 – Nov. 22

Unit Overview: In this unit, students will focus primarily on increasing their skills with representing and solving word problems from the more basic problems they worked with in kindergarten. Students may need to continue working on recognizing, reciting and generating numbers from 0-99 and skip counting by twos, fives, or tens to determine the total number of objects in a set up to 99. Students will use concrete and pictorial models to compose and decompose numbers up to 99 in more than one way and apply basic fact strategies to add and subtract within 20. Students will explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences. In future grades, students will represent and solve single step and multi-step word problems using larger numbers and build to multiplication and division.
Big Ideas:
• Represent the comparison of two numbers using comparative language, place value, composing and decomposing, open number lines, and symbols.
• Order three to four whole numbers using place value and open number lines.
• Numbers can be represented in a variety of ways that represent the same quantity.
• There is more than one way to make a combination of 99.
• Grouping is a way to count, measure and estimate.
• A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
• The context of a problem determines the reasonableness of a solution.
• Solve problems with the unknown in any position of the number sentence.

Essential Questions:
• How can numbers be manipulated?
• How can we compare numbers?
• Why is it important to be able to compare numbers?
• How does finding the common characteristics among similar problems help me to be a more efficient problem solver?
• How do I know where to begin when solving a problem with unknowns?
• How do I know which mathematical operation to use?

<table>
<thead>
<tr>
<th>Concepts within Unit #5</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Compare and Order Numbers Up to</td>
<td>1.2G, 1.2A, 1.2D, 1.2E, 1.2F</td>
</tr>
<tr>
<td>Concept #2: Compose and Decompose 99 with Two or More Addends</td>
<td>1.2C, 1.2A, 1.2B, 1.3C, 1.3D</td>
</tr>
<tr>
<td>Concept #3: Addition and Subtraction Word Problems to 20 with Unknowns</td>
<td>1.3B, 1.3F, 1.5D, 1.3A, 1.3C, 1.3D, 1.3E, 1.5E, 1.5F, 1.5G</td>
</tr>
</tbody>
</table>

Unit 6: 2D Shapes & 3D Solids with Fractions
Estimated Date Range: Dec. 2 – Dec. 19

Unit Overview: In this unit, students will partition 2D shapes into two and four equal parts and be able to identify examples and non-examples of halves and fourths. This will be the foundation for future learning around fractions. They will also build from their understanding of 3D shapes in kindergarten to include rectangular and triangular prisms. Students will identify and describe attributes of 3D figures using geometric language, as well as determine attributes that describe 3D shapes. Students should determine between attributes that define three-dimensional figures and those that do not define three-dimensional figures. Students will continue to build their understanding of two-dimensional shapes and three-dimensional solids in future years, adding additional shapes and determining perimeter, area and volume of shapes as well as identifying angles.

Big Ideas:
• Geometric shapes are a representation of the world around us.
• Objects can be analyzed, sorted, and compared by attributes.
• A comparison of a part to the whole can be represented using a fraction.
Essential Questions:

- How do we use geometry to make sense of the real world?
- What are the ways to describe shapes?
- How can objects be compared using descriptors from geometry?
- Why is it important to be able to understand parts and wholes?

<table>
<thead>
<tr>
<th>Concepts within Unit #6</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: 2D Shapes and Fractions</td>
<td>1.6A, 1.6D, 1.6B, 1.6C, 1.6F, 1.6G, 1.6H</td>
</tr>
<tr>
<td>Concept #2: 3D Solids</td>
<td>1.6E, 1.6B</td>
</tr>
</tbody>
</table>
Grading Period 3

Unit 7: Graphing

Estimated Date Range: Jan. 7 – Jan. 13

Unit Overview: In this unit, students will collect, sort, and organize data to create picture graphs, as they did in kindergarten. Collecting, sorting, and organizing data to create bar graphs is new for this year. Students will use tally marks to organize their data, and answer and ask questions based on the data within their graphs. Students will continue to build different types of graphs in future grades, such as stem-and-leaf and dot plots using larger and larger numbers, and use those graphs to ask and answer more complex questions.

Big Ideas:
- Data helps us make sense of information in our world.
- Organization of information shows relationships.
- Data can be collected, organized, sorted, and analyzed in a variety of ways by creating graphs.

Essential Questions:
- Why and how do we sort information?
- How do graphs help you to interpret data?
- What are some ways we can organize data?

<table>
<thead>
<tr>
<th>Concepts within Unit #7</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Create and Interpret Graphs</td>
<td>1.8C, 1.3D, 1.8A, 1.8B</td>
</tr>
</tbody>
</table>

Unit 8: Numeration 0-120 and Addition & Subtraction with Word problems with Missing Addends

Estimated Date Range: Jan. 14 – Feb. 21

Unit Overview: In this unit, students will focus primarily on increasing their skills with representing, comparing and composing and decomposing numbers to 120 and solving word problems. Students may need to continue working on recognizing, reciting and generating numbers from 0-20 and skip counting by twos, fives, or tens to determine the total number of objects in a set up to 20. Build upon their understanding of numbers to 20 to represent, compare compose and decompose numbers to 120, including expanded form. Students will use concrete and pictorial models to compose and decompose numbers up to 120 in more than one way and apply basic fact strategies to add and subtract within 20. Students will explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences. In future grades, students will represent and solve single step and multi-step word problems using larger numbers and build to multiplication and division.

Big Ideas:
- Numbers can be represented in a variety of ways that represent the same quantity.
- Numbers can be compared using symbols (>, <, =) and comparative language (greater than, less than, equal to).
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- The context of a problem determines the reasonableness of a solution.
Essential Questions:
- How can numbers be manipulated?
- How can we compare numbers?
- Why is it important to be able to compare numbers?
- How does finding the common characteristics among similar problems help me to be a more efficient problem solver?
- How do I know where to begin when solving a problem?
- How do I know which mathematical operation to use?

Concepts within Unit #8

<table>
<thead>
<tr>
<th>Concept #1: Counting and Grouping to 120</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2C, 1.5A, 1.5B, 1.5C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept #2: Place Value/Compose & Decompose to 120</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2C, 1.2A, 1.2B, 1.5C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept #3: Compare and Order to 120</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2G, 1.2D, 1.2E, 1.2F, 1.5C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept #4: Facts to 20</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2A, 1.2B, 1.3C, 1.3D, 1.3E, 1.5E, 1.5F, 1.5G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept #5: Problem Solving to 20</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3D, 1.3F, 1.5D, 1.8C, 1.8A, 1.8B</td>
</tr>
</tbody>
</table>

Unit 9: Measurement

Estimated Date Range: Feb. 24 – Mar. 6

Unit Overview: In this unit, students will build from using comparison to measure objects to using nonstandard units of measure to measure the length of objects and describe the length using a whole number and a unit, for example 3 small paper clips. They will measure the same object using two different length units and explain why the object measures different lengths. Students will be able to explain how to measure an object, such as use the same size unit laid so the side of one unit is touching the side of the next unit. Students will transition to standard units of customary and metric units in future grades.

Big Ideas:
- Measurement describes the attributes of objects and events.
- Standard units of measure enable people to interpret results or data.

Essential Questions:
- Why do I measure?
- Why do I need standardized units of measurement?

Concepts within Unit #9

<table>
<thead>
<tr>
<th>Concept #1: Measuring Length</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.7D, 1.7A, 1.7B, 1.7C</td>
</tr>
</tbody>
</table>
Grading Period 4

Unit 10: Time

Estimated Date Range: Mar. 16 – Mar. 26

Unit Overview: In this unit, students will begin using clocks to tell time. They will be able to read the time to the hour and half hour on both digital and analog clocks. This will build to being able to read the time to one-minute increments and determine elapsed time in future grades. Being able to read and understand time as a measurement of our day will aide students in estimating time to complete an activity to budgeting time.

Big Ideas:
- Understanding time as a unit of measure that breaks our day into increments is a vital life skill.

Essential Questions:
- How does being able to tell time help you organize yourself?

<table>
<thead>
<tr>
<th>Concepts within Unit #10</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Time</td>
<td>1.7E, 1.6H</td>
</tr>
</tbody>
</table>

Unit 11: Addition and Subtraction

Estimated Date Range: Mar. 27 – Apr. 20

Unit Overview: In this unit, students will build on their understanding of addition and subtraction to 20 with numbers, strategies and word problems. Composing and decomposing to 10, a kindergarten strategy, will help students be able to manipulate the numbers using properties of operations to solve problems. Though students will work on adding and subtracting numbers, a strong emphasis needs to be on word problems and determining which operation to use to solve. Building a strong foundation of adding and subtracting to 20 is imperative for students as they continue to add and subtract larger numbers with increasingly more complex problems in future grades.

Big Ideas:
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.
- A problem solver can mathematically explain why a solution is reasonable in the context of the problem.

Essential Questions:
- How does finding the common characteristics among similar problems help me to be a more efficient problem solver?
- How do I know where to begin when solving a problem?
- How do I know which mathematical operation to use?

<table>
<thead>
<tr>
<th>Concepts within Unit #11</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Addition and Subtraction</td>
<td>1.3B, 1.3F, 1.5D, 1.8C, 1.3A, 1.3D, 1.3E, 1.5E, 1.5F, 1.5G, 1.8A, 1.8B</td>
</tr>
</tbody>
</table>
Unit 12: Graphing with Larger Numbers
Estimated Date Range: Apr. 21 – Apr. 29

Unit Overview: In this unit, students will collect, sort, and organize data to create picture graphs, as they did in kindergarten. Collecting, sorting, and organizing data to create bar graphs is new for this year. Students will use tally marks to organize their data, and answer and ask questions based on the data within their graphs. Students will continue to build different types of graphs in future grades, such as stem-and-leaf and dot plots using larger and larger numbers, and use those graphs to ask and answer more complex questions.

Big Ideas:
- Addition and subtraction are inverse operations.
- A problem solver understands what has been done, knows why the process was appropriate, and can support it with reasons and evidence.

Essential Questions:
- How are mathematical operations (addition and subtraction) related to each other?
- How do I know which mathematical operation to use when solving problems?
- How do I know which evidence to use to support my reasoning?

<table>
<thead>
<tr>
<th>Concepts within Unit #12</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Creating and Analyzing Graphs</td>
<td>1.8C, 1.5D, 1.3D, 1.8A, 1.8B</td>
</tr>
</tbody>
</table>

Unit 13: Money
Estimated Date Range: Apr. 30 – May 13

Unit Overview: In this unit, students will build from just identifying coins to identifying them by value and understanding the relationship between coins and their values. Students will use skip counting by twos, fives and tens to find the value of a collection of coins and be able to write that amount using numbers and the cent symbol. This will lay a foundation for counting coins and bills and adding and subtracting amounts of money, which will transition into decimal operations. Being able to accurately count and determine amounts of money is a skill everyone needs to be successful and fiscally responsible later in life.

Big Ideas:
- All pieces of money have a specific, definite value.
- Different combinations of money may make the same amount.

Essential Questions:
- Why is it important to understand the value of coins?
- How does understanding numerical operations help us use money?

<table>
<thead>
<tr>
<th>Concepts within Unit #13</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Money</td>
<td>1.4C, 1.4A, 1.4B</td>
</tr>
</tbody>
</table>

Unit 14: Personal Financial Literacy
Estimated Date Range: May 14 – May 28

Unit Overview: In this unit, students will build off their understanding of income and wants and needs from kindergarten. They will understand that income can be spent or saved and that part of that includes giving to charities. Money can be spent on goods and services and choices need to be made between something that is a
need and something that is just a want. Students will continue to learn about financial matters, such as borrowing, saving, spending and budgeting. Learning to be fiscally responsible will help students make financial decisions for the rest of their lives.

Big Ideas:
- Money can be spent to obtain goods and services, saved or given to charities.
- Knowing about financial options and obligations can help an individual make responsible choices with their money.

Essential Questions:
- How can money be used?
- What financial choices do people make about their money?

<table>
<thead>
<tr>
<th>Concepts within Unit #14</th>
<th>TEKS (Link to Math TEKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept #1: Personal Financial Literacy</td>
<td>1.9A, 1.9B, 1.9C, 1.9D</td>
</tr>
</tbody>
</table>